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Objectives

Electronic Logic Devices:
« Optical Interconnects in mid-IR
Modulator ~ Less Watts per Quanta Fiux
Electronic Logic > Lower IR Powers

B «Mid-IR Ranging

g « IR Decoy Projection

Detector « Fres Space Communications
etec «Pollution Monitoring

« Digital Optical Logic
intersubband Laser

Opto-Electronic Systems:

Electronic Logic 3D Very Large Scale Integrated Optics with
L Ultra High Confinement Waveguides

TEITTEN

Modulator

Electronic Logic
[EEEREEE] m

Laser Optical Logic Detector




Modulator Physics

« 1->3 Transition has been isolated from free carrier, and lower level transition
absorption.
—~  Lower level transitions are narrowed by doping in barriers.
— Lower level transitions are positioned for minimum loss.
« Free carrier loss has been minimized, while maintaining good electrical properties,
using QWs as electrodes
_  Eliminated field exclusion at modulation wavelength by placing the QW electrode
resonance at a higher energy than the modulator resonance so it's index is positive.
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Lessons Learned From
Bulk Modulator

Problem - Solution
J Homogerisous

aw
Elostrods Eloctiudo

Free electron absorption is strong in highly deinor
doped electrode regions. - Use QWs in Absorption
electrode to reduce free electron absorption.

Wavelength

Electrode resonance in far-R reduces po
penetration of mid-IR light (lowers refractive e
index) - Resonance must be higher energy

than modulator resonance. T ien o

Absorption

Lower level transitions can cause residual
absorption - Use step wells and dope in
barrier to lower linewidth and increase
separation of these states.

Absorption

Wavelangih




Electronic Logic
Intersubband Modulation
Modulator

Modulator Mechanism
_ Break symmetry with electric fields to allow 1-3
transition.

-

A built-in field is created with delta doping on edge of
well.
_ Allows observation in spectrometer without
application of field. deta
doped +

_-nw

Doping outside well allows narrower, stronger lines ! +*
with less interference from other lines. barrier

— Use step in Al concentration to create built-in field. doped




RC = 400 psec

Bulk Modulator

Bulk Modulator Response

millivolts

0 100 200 300 400 500

nanoseconds

Demonstrated Risetime << 10 nsecs
(limited by Function Generator and Detector)
A 20 volt, 100 nsec wide electrical pulse was applied.




Absorbance

Ge Epitaxy Absorption Loss
versus

Substrate Temperature During Evaporation
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Low Temperature Ge Growth

0.84 1.56 micrometers  e———

0.66 micrometers

DODOTO VTP

3500 3000 2500 2000 1500 1000 500
Wavenumbers
The absorption peak at 830 cm-! decreases in proportion to the thickness

of the sample when etched, indicating a bulk effect. This is now believed
to be from incorporation of Ge Oxide.

The absorption peak at 830 cm-1 for the films grown at RT and 50 °C
decreases in proportion to a 68% decrease in Ge film thickness via a chemical
etch, indicating the features are froma bulk effect. The broad peak at 3200 cm-
1 has a similar behavior. This spectrum was also found to be polarization
independent.




High Temperature Ge Growth
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Analytic Model

D

Absorbance
Absorbance

As the high temperature sample is etched, the magnitude of the absorption
stays constant, but the oscillation frequency changes. This is expected from
a thin polarized absorber at the Ge/GaAs interface, ikely to be free electrons

from interdiffusion.

Figure 3. The absorption spectra for the UHV Ge film deposited at 500 C
before, (a), and after, (b), removal of 54% of the Ge film from 1.15mmto 0.53
mm. using a chemical etch. The much-less-than-linear thickness dependence n
the magnitude of the Absorbance indicates this absorption is from an interface.
The oscillations in wavelength are expected for a polarization dependent thin
f1m absorber because of interference of the total internally reflected beams.
Fig. 3(a) shows the measured and analytic multilayer interference model fora
thin birefringent layer at the Ge/GaAs interface. The absorption is taken to be
birefringent with a Drude model laterally and an intersubband in the
confinement direction. The analytic model required a Ge thickness 0f0.97 mm
to position the spectral peaks and valleys at the wavenumbers as shown
whereas the actual thickness was measured to be 1.15 mm. The analytic curve
in Fig. 3(b) uses the same model parameters as for 3(a), but with a Ge
thickness of 0.47 mm, close to the measured 0.53 mm thickness of Ge film
obtained after chemical etching. Note the observed change in spectral behavior
is also qualitatively similar to that expected for a thin birefringent absorber at

the Ge/GaAs interface.
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1.0 mm

Slab Waveguide Modulator

Electrodes

Grating Couplers




Slab Modulator with Gaussian Coupler
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— Gaussian Coupler
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__——Beam Deflector
(on back side)




Tooth Width (um)

-60

Grating Coupter

Single mode injection
AR Field Profile from Finke Element Model
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Radiation into GaAs substrste

Tooth Width Profile Scattered Power 20 um below grating
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Radians

FEM Amplitude Plot

Amplitude of Scattered Light at Several Distances from Grating
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Power Fraction

Power Fraction

Coupling per Tooth

Tooth Width = 1.5 microns
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Transmission (total)

Ge Waveguide Loss per Length

Slab Waveguide Performance

10.0E-3
Efficiency .
Delta n (Fresnel)
Beam Deflector
10E3 o Gaussian Grating : 0.55: 0.54:
’ B :Single Couple . 0.286: 0.1562
. Double Couple :  0.082:  0.023
~a-10/cm loss
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Ultra High Confinement Integrated Optics

« Dramatically improved opto-electronic device performance.
» Very Large Scale Integrated Optics (VLSIO)
X

A typical semiconductor An UHC waveguide, with index
waveguide, usually buried I ratiosas highasdtoionits
in a simifar index claddi oundaries.

A minimum focal spot
of 2) has a good overlap
to the typical extended
waveguide mode.

. A minimum focal spot

of 21 Is a poorly coupled
" to the tightly confined UHC
" waveguide mode.

Typical Semiconductor
Waveguide Bend

Resonators Bends

Typical Microlaser

[ G Resonator UHC Bend
Radius <13,

N |




Ultra High Confinement Waveguides

. 22 Vertical component of electric fields.
Cross Sectional Area < 0.1 (from Finite Element Modeling)

GaAs
n=3.27

Rectanguiar Waveguide
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Microwave Scale Waveguide Experiments
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Effective index

Effective Index
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Effective Index for Ridge Waveguide
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Optical Logic

ﬁ Coupling into Waveguides
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An UHC
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Through-Wafer Alignment

CO, laser beam at normal incidence is
used to create burn spots on reverse
side of wafer for back-side alignment.

Fresnel Lenses

Focusing
Near-IR
White Light




Bends and Resonators

Tapered Width Si on SiO, Resonator

SiWaveguide

Substrate

Electric field amplitude for TE Mode Reflection
out of plane component
Light goes around corner

Over 90 % power
abits output wall

Interference from
reflected wave

Standing wave f'r

computer reflectior

THmode MEFT Low loss reflection indicates a
Input Light” cavity with a Q > 100 is possible




UHC Waveguide

Through-Wafer Alignment
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Active UHC
Waveguide
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Electronic Logic

—— Detector Physics and

Detector System Test
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High Speed Modulator Evaluation: Microwave
Network
Analyzer

Electronic Logic Electronic Logic

CO,Laser Modulator Detector




